Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters.
نویسندگان
چکیده
A total of 310 MT/V5 single cells were tested in anesthetized, paralyzed macaque monkeys with moving random-dot stimuli. At optimum stimulus parameters, latencies ranged from 35 to 325 ms with a mean of 87+/-45 (SD) ms. By examining the relationship between latency and response levels, stimulus parameters, and stimulus selectivities, we attempted to isolate the contributions of these factors to latency and to identify delays representing intervening synapses (circuitry) and signal processing (flow of information through that circuitry). First, the relationship between stimulus parameters and latency was investigated by varying stimulus speed and direction for individual cells. Resulting changes in latencies were explainable in terms of response levels corresponding to how closely the actual stimulus matched the preferred stimulus of the cell. Second, the relationship between stimulus selectivity and latency across the population of cells was examined using the optimum speed and direction of each neuron. A weak tendency for cells tuned for slow speeds to have longer latencies was explainable by lower response rates among slower-tuned neurons. In contrast, sharper direction tuning was significantly associated with short latencies even after taking response rate into account, (P = 0.002, ANCOVA). Accordingly, even the first 10 ms of the population response fully demonstrates direction tuning. A third study, which examined the relationship between antagonistic surrounds and latency, revealed a significant association between the strength of the surround and the latency that was independent of response levels (P < 0.002, ANCOVA). Neurons having strong surrounds exhibited latencies averaging 20 ms longer than those with little or no surround influence, suggesting that neurons with surrounds represent a later stage in processing with one or more intervening synapses. The laminar distribution of latencies closely followed the average surround antagonism in each layer, increasing with distance from input layer IV but precisely mirroring response levels, which were highest near the input layer and gradually decreased with distance from input layer IV. Layer II proved the exception with unexpectedly shorter latencies (P< 0.02, ANOVA) yet showing only modest response levels. The short latency and lack of strong direction tuning in layer II is consistent with input from the superior colliculus. Finally, experiments with static stimuli showed that latency does not vary with response rate for such stimuli, suggesting a fundamentally different mode of processing than that for a moving stimulus.
منابع مشابه
Contrast dependence of suppressive influences in cortical area MT of alert macaque.
Visual neurons are often characterized in terms of their tuning for various stimulus properties, such as shape, color, and velocity. Generally, these tuning curves are further modulated by the overall intensity of the stimulus, such that increasing the contrast increases the firing rate, up to some maximum. In this paper, we describe the tuning of neurons in the middle temporal area (MT or V5) ...
متن کاملFunction of center-surround antagonism for motion in visual area MT/V5: a modeling study
Neurons in cortical area MT or V5 of primates have a large, modulatory region surrounding the classical receptive field. This 'surround' has been suggested to be involved in motion segmentation, as well as in shape-from-motion processing. Our hypothesis is that it plays a functional role in both. We verify this by modeling the electrophysiological data obtained by Orban and co-workers in the ma...
متن کاملThe neural representation of speed in macaque area MT/V5.
Tuning for speed is one key feature of motion-selective neurons in the middle temporal visual area of the macaque cortex (MT, or V5). The present paper asks whether speed is coded in a way that is invariant to the shape of the moving stimulus, and if so, how. When tested with single sine-wave gratings of different spatial and temporal frequencies, MT neurons show a continuum in the degree to wh...
متن کاملThe selectivity of neurons in the macaque fundus of the superior temporal area for three-dimensional structure from motion.
Motion is a potent cue for the perception of three-dimensional (3D) shape in primates, but little is known about its underlying neural mechanisms. Guided by recent functional magnetic resonance imaging results, we tested neurons in the fundus of the superior temporal sulcus (FST) area of two macaque monkeys (Macaca mulatta, one male) using motion-defined surface patches with various 3D shapes s...
متن کاملColumnar Organization of Diredmally S&dive Cells in Visual Area MT of the Macaque
SUMMARY AND CONCLUSIONS 1. We recorded from single neurons in visual area MT of the macaque in order to examine the spatial distribution of its directionally selective cells. The animals were paralyzed and anesthetized with nitrous oxide. 2. All MT neurons (n = 6 14) responded better to moving stimuli than to stationary stimuli. For 55% of the neurons, responses to moving stimuli were independe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 82 4 شماره
صفحات -
تاریخ انتشار 1999